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Abstract In this study, I address the testing problem on the regression trend
slope in cointegrating regressions when the stochastic regressors have nonzero
drifts. A test statistic constructed using demeaned integrated modified ordinary
least squares (IMOLS) residuals is considered. Asymptotic theory for the test is
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1. INTRODUCTION

In this study, I address the trend coefficient testing problem in cointegrating
regressions when /(1) regressors have nonzero drifts (i.e. contain deterministic
linear trends). Testing for the regression trend slope is important to learn about
the nature of the cointegrating relationships. If the regression trend coefficient
is zero, the (1) series are ‘deterministically cointegrated’, in which the linear
combination with a cointegrating vector eliminates the deterministic trends as
well as the stochastic trends. Otherwise, the /(1) series are only stochastically
cointegrated and the cointegrating relationship involves a deterministic trendE]
See |Ogakil {1992; |Ogaki and Park, (1997; |Han and Ogaki, (1997; |Kakkar and
Ogaki, (1999; Wagner, 2015} and Mikayilov ef al.l 2018| for related empirical
applications.

I develop a test on the trend slope in the integrated modified ordinary least
squares (IMOLS) estimation (Vogelsang and Wagner, 2014) framework, using
an IMOLS residual that is obtained by plugging in the IMOLS estimator in the
original regression equation. However, I find that this residual must be demeaned
to apply it to construct a consistent long-run variance estimator. Without de-
meaning, the resulting heteroskedasticity and autocorrelation consistent (HAC)
estimator is not consistent and the associated test is not appropriate for statistical
inference unless the regressors have no drift. The performance of the proposed
IMOLS-based test is evaluated via a simulation experiment. The simulation re-
sult shows that the IMOLS-based test has smaller size distortions with a moder-
ate loss of power, compared to the fully modified OLS-based test.

The remainder of the paper is organized as follows. Section 2 presents the
model and provides a review of the IMOLS estimator. Section 3 develops the
asymptotic theory for the test. Section 4 evaluates the performance of the test in
finite samples via a Monte Carlo simulation, and Section 5 provides an empirical
application. Section 6 concludes the paper.

ISee (Ogaki and Park| [1997; [Perron and Campbelll |1993; (Campbell and Perronl 1991; and
Perron and Rodr “1guez} 2016|for further discussion.
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2. MODEL SETUP AND PRELIMINARY RESULTS

2.1. MODEL AND ASSUMPTION

Suppose that y, (scalar valued) and x; (k dimensional) are /(1) series with
drifts:
Ve =0y, o))
X; = Ol + Oyt —i—x?,
where &, # 0,y =% , +/, and x? = | + v, with v} and v, being 1(0). 1
consider the unrestricted regression equation:
Yo =8+ 0t +x,B +u, (2)

where & = &, — ', 8 = 8, — B'S,, and u, = y? — B'xY ~ 1(0). The null hy-
pothesis of interest is Hy : 6; = 0 (deterministic cointegration) and the alternative
hypothesis is H; : 8; # 0 (stochastic cointegration).

Assumption 1.
Let 1, = (u;,v])’, and assume a functional central limit theorem of the form:

7]
T”zZTln, = B(r) = @Eg) ='W (r), relo,1],

where W (r) = (w, (r),w!,(r))"is (k + 1)-dimensional standard Brownian motion

with
T
Q Q
. —1 _ uu uv
Q= Thggo (T var (E n,)) = {Qvu Qw] > 0. 3)

=1
Under Assumption 1, y; and x; are cointegrated up to the deterministic trend.
Following the literature, the Cholesky form of Q!/2 is used:

Ouy A'uv
2

QI/Z —
0 Q)

, where 62, = Qu, — Q2. Q. 4)

Note that wy, () represents the part of B, (+) that is independent of B, () = Q% 2wv( ).

Define the one-sided long-run covariance matrix
AL{M AL{V

_°° !\ — _ /_Zuu ):uv
A—;E(nr—]m)—[,\m AW] andE—E(mn,)—[Z . ] 5)

A A
Note that Q =X+ A+ A’. Further, define A=Y+ A and denote A = [ it ”v] )
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2.2. IMOLS ESTIMATOR

Vogelsang and Wagner| (2014)) (hereafter, VW (2014)) proposed the IMOLS
estimator, which is the OLS estimator in the following partial-summed and aug-
mented regression:

:Sf'6+S"’B +xly+8", (6)

with § = (8,81). 8 =Xy, 8/ =X fi=X'= (1)), $F =X/ x), and

— 29:1 u;. In matrix form,
S = 556 + S, (7)

~ . . /
where ¥ — (Sf:Sx:X> and @ = (8, B,y with 8/ = (S{, . .s;) L S¥= (85,88,
and X = (x,...x7)". The IMOLS estimator of @ is given by

6 — (3’,5’,?)/ _ (Sf’sf)flsf’sy. @)

VW (2014) derive the following limit result for the case of 6, =0 :

5§-5 T'274(6 - 5)
Aw| B-B |=| T(B-B) %cw( [ & dsn’) I [ g(s)win(s)ds,
A 71 A _
- Q‘vv 'Q‘VM (’)/— le QW)
)
where
L 0 0 5 f(s)ds T-'12¢;1 0 0
m=[0 Q> o |,er)=|tw(s)ds|, Am= 0 T 0|,
0 o0 o/ wy(r) 0 0 I
(10)

and 7r is a diagonal matrix with diagonal elements 1, T satisfying

[rT]

—1 Zﬁ N /Orf(s)ds, re[0,1] as T grows with f(s) = (1,s). (11)

When 6, # 0, the limit result in @} is still valid for ﬁ and ¥ but not for 5. The
fully valid limit result for the present case of nonzero drifts (J;) in the regressors
is derived in|Cho| (2022a). Define 0, = (&', ', Q;.") and G(r) = [§ g(s)ds
Cho (2022a) shows that
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o TI/ZTFD)IC?/Q;‘)IQW L
() (6-0.)+ 0 = (4B ' (6-6.) a2
0
J 1 -1 !
—mWnl( g(s)g(s)’ds> / (G(1) =G (s))dwyy (s) ::A°°:<A°g’, Ay’ ,A‘;”),
0 0 IX2 ixk Ixk
where
T'27:DI'Q1Q,, §-Di'alQ,
0 -Qv_v]Q'vu
and
T-12¢;1 0 0
Ab = -r7'D, T, 0 |, (13)

-Df 0 I

with D, = <0 : 5x> and Df = <5x : 0) , both being k x 2 matricesi

Conditional on w, (), the variance of A* in (12) is given by 62T~V IT7! :=

02,V with
_ 1 1 , ,
vie= ([ seras) [ 606660 -6 ds ( [ etontsyas)
(14)
and also conditional on wy, (+), var (AE) =02 (E-V4y E) = Vlﬁ,,, with E =

[0k2 Ik Oxr] -
Building on the result in (I2), the asymptotic result that can be directly ap-
plicable for the inference on 8; can be derived (see Cho|(2022b)):

-1 1 -1

T (31 - 51> 4 83, (15)

where AE’ is the segment of A™ that corresponds to B defined in 1|

2(ab) 7 = 0 Tl 0

727 T'24D, T 2Dl
0 0 I
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3. INFERENCE FOR THE TREND COEFFICIENT

3.1. IMOLS-BASED TEST

The limit distribution in (I3)) provides a basis for constructing a test statistic,
which is given by

TS
A (16)

\ VAo,

where 8, = -1 YT, Ax; and ‘71113‘,[ denotes a consistent estimator of Vlﬁ,l =02 (E-V4 E)

with E = [0gx2 Ix Ogxx|. Thus, an estimator \A/Ilz,[ is composed of two parts: esti-
mators of 62, and E -V}, - E'.

As shown in VW (2014) 171‘1",1 is consistent for V}3,, and |Cho, (2022a) shows
that E - V55, - E is a consistent estimator for E - V3, - E' even in the present case

0, #0:
. . .
Vit = Ay (S78) (') (577)  Ap,

where C = (cy,ca,...,cr)’, with ¢; = ZJT-ZI S’JN?— th llS)J‘ and Sx’ the j/ row in

St

To estimate 62, one might consider using i, = y, — f/ g—xé E , which is ob-
tained by plugging in the IMOLS estimator in the original regression equation
(2). It will be shown that this residual contains terms involving the nonzero
drift (8;), and it does not deliver a consistent estimator of the long-run variance
(Corollary 1). However, the demeaned residual leads to a consistent long-run
variance estimator and a valid statistical inference with the standard normal ap-

proximation. The demeaned residual is given by

and Axt = Ax[ A.x = (Vt + 6 ) T Z?: (Vt + 6)6) = V[ _— ﬁzz;z V[ = V;I
with Ax = 1 12: , Ax;. Define 1, = (Ad A)‘é;),. The nonparametric kernel-
based HAC estimator for the long-run variance € is given by

1 a ’l_]‘ AA/ ﬁuu ﬁuv
=7 Y Yk < ;=15 & |
i=1j=1 vu vy

where k (x) is a kernel function, for example, the Bartlett kernel: & (x) = (1 — |x])-
1(]x| <1).
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Provided that Q is consistent for Q, cAquv = ﬁuu — SAZWSAZ;} SAZW and ‘71631/1 =
G2, (E Vo, E ) are consistent for 62, and Vlﬁ,l, respectively. Upon this consis-
tency property, by the standard conditioning argument, tgl” converges in distribu-
tion to N(0, 1) under Hy. For the consistency of the long-run variance estimator,
some regularity conditions for 1, = (i, v;)' are required. In addition, for the
case where (u;, v/)' needs to be estimated, another set of sufficient conditions
such as those found in|Hansen| (1992a) may be invoked.

First, different sets of regularity conditions for consistency of HAC estima-
tors are provided in the literature (see Newey and West, [1987; |Andrews, 1991}
Hansen, |1992a; and Jansson, 2002/ among others). The unobserved series {1}
should be assumed to meet at least one of those conditions. In the present paper,
I assume that the conditions (K), (S), and (V1) in Hansen|(1992a)) hold for {7, }:

Let {a,,}, _, denote the o--mixing coefficient for {n, } EI

(K)  For all x € R, |k(x)| <1 with k(x) = k(—x) and k(0) = 1; k(x) is
continuous at zero and for almost all x; [ |k(x)|dx < oo.

(S) M — oo as T grows, and for some g € (1/2,00), M'724/T = 0,(1).

(V1) Forsome r € (2,4] such that r > 2+ 1/¢, and some p > r,

(V1) 1255 o /P < oor (Vi) supys |10, < oo

The condition (K) is satisfied by most popular kernels including the Bartlett,
and QS kernels. As documented in[Hansen| (19924)), the condition (S) is also sat-
isfied for the data-driven bandwidth proposed in |Andrews|(1991), with different
values of ¢ depending on the kernel. For the Bartlett and QS kernel, the condi-
tion holds with ¢ = 1 and g = 2, respectively. Note that this condition implies
that M = 0,(T'/3) for the Bartlett kernel, and M = 0,(T'/?) for the QS ker-
nel. (V1-i) imposes a restriction on the degree of temporal dependence for {1},
and (V1-ii) states that the L? norm of the series is uniformly bounded, putting a
restriction on the tail-thickness of the distribution.

Second, for the case where (u;, vﬁ)’ needs to be estimated, Hansen! (1992al)
provides a set of sufficient condition (condition (V3) in his paper) that guarantees
the consistency of a HAC estimator. Suppose that we construct a HAC estimator

using the residuals V, (0) =V, —X] (5 — 90) to estimate the long-run variance

of V. Here, 8 represents a model parameter, 0 is an estimator for 8y, and X,
denotes a set of regressors. Let {57 } be an appropriate sequence of deterministic

3The condition (V1-i) may be stated in terms of the ¢ mixing coefficients as in Hansen
(1992a)).
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nonsingular matrices. The set of sufficient condition in [Hansen| (1992a)) is as
follows:

(V3-ii) sup ||X]87|| =0, (1), and
t<T

(V3-iii) VT (87) (5 - 90) =0,(1).

As the HAC estimator is constructed with 7, = (@, Ajc';)l, the sufficient
condition in Hansen| (1992a)) should be checked for ﬁ,.
Note that

=y —f,’g—x;B\ =u — (f,/, X, 0') (5— 9*>
and
wl = ul = (5, 0) (8-0.) =uf — (£, 5", 0) by (aB) ' (6-6.).
(17)

where uf =u, — 3 X5 uj, [l = fi— X0 foand xf =x, — 3 X0_ x;.
The proof for Theorem 1 in the Appendix shows

@l =yl — ( dr i 0’) AR (5_ 9**) :

where
T'20:DF'Q-1Q,, §-DI'Q 10,
0.. =0, — A, 0 = B
0 Q1Q,,

Now, rewrite 7, as

ao WY (Y (2, 5", ) (6-6..)
= Ax, V;i 0k><1

_ < ug )_( (£, x', 0/) AP, ) (Aﬁ})_l <§_9**)'

Vi 05 (2442)

This equation shows that 7; satisfies the conditions (V3-ii) and (V3-iii) if iZ,d
does. In the proof for Theorem 1 it is shown that

(ah) " (6-0.) = 0,(1),
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and
sup H\/T( ,d', x,d/, 0')Aﬁf1 =0,(1),

1<t<T

. . . .. . !
which verifies that & meets the sufficient condition with 87 = A9, X, = (', x', 0/),

@z@, and 6p = 6,,. R
Theorem 1 states that the HAC estimator € is consistent, which is established
by showing that the conditions (V3-ii) and (V3-iii) hold.

Theorem 1. Under Assumption 1, (K), (S), and (V1), as T and M grow, it holds
that R
Q%0 and 2 5 o2 (18)

Proof: See the Appendix.

Remark. Unlike #¢, the undemeaned residual % does not satisfy the Hansen’s
sufficient condition. To see this, rewrite the residual as

i =u— (f], ¥, 0) (é—e*) (19)
T'21:DE'Q 10,
—u = (. 2, 0) (8- 6..) = (/. 5, 0) ARy 0
0

=u,—(f], x, 0) (§— 9**) -8 la,,

XT W

and observe that the last term 8/Q 'Q,, is generally not zero if the regressors

have nonzero drifts (8, # 0). Also, with a nonzero Jy,
VT (], x, 0') Ay = (1, )T, T~ ol + T2, — \/fs;)

explodes as T grows, violating the condition (V3-ii). Next Corollary directly
shows that the HAC estimator constructed with i; is not consistent for ,,,. De-
fine

M .
~ ~ J ~
QLlu:FO+2121k<M> r]v (20)

. 1vT o~
where F] = th:j+1 Uy —j.

Corollary 1. Under Assumption 1, (K), (S), and (V1), as T and M grow, it holds

that

1 ~ 1
— Q5 2B / k(x)dx, 1)
M 0

where B = 8/ (A7 — Q,,!Q,,).
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Proof: See the Appendix.

B vl it 7, = (@, ALY
QVM QVV

Note that ﬁw = ﬁw LA Q,,. In addition, it can be shown that ﬁuv (and S~2w,) is

0, (%) as Qu, is, by using the same arguments in the proof of Corollary

1. Thus, Gp, = Qui — Q) Qui = O, (M) -0, (%ﬂ) 0,(1)0,, (@) -

.

Remark. Define Q= Ly7 | Yiik ('Fj‘> nin; =

M J

0,(M)-0, ((%)ZM ) = 0, (M) . Hence the associated ¢ statistic converges to

zero under Hy. Therefore, the standard normal approximation is invalid.

3.2. FMOLS-BASED TEST
For the fully modified OLS (FMOLS) estimator, [Hansen| (1992a)) shows

T (Bew—B) % (0.95%) < o ( / 1Ju<r>Ju<r>’dr) ) / ()
- UMVEFMHEJ{/I </0] Ju(r)Ju(r)’dr) o /0] Ju(rywyy(r)dr ::AEFM,

with Ju(r) = (£(r) (1)) EP = (02, 1) and Ty = diag (12, @11  The
asymptotic distribution for the FMOLS estimator of §; can be similarly obtained
by following the steps applied for deriving (see |Chol (2022a)) and Hansen
(1992a))).

T (8" 8) % -8A5,. (22)
The variance of the limit in conditional on w,(+) is given by

1 —1
6;V£M5X =4/ (ajVEFMHF}V, ( / Ju(r)Ju(r)’dr> HF}V,EFM'> 5. (23)
0

i= &8, (o EFMVE,ET™M) 5,

-1
where V¢, =1, ( fol Ju(r)Jy (r)’dr) I1},. The inference for §; can be con-
ducted with R
T5FM
s = ———— 24)
Az
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where &, = 1LYl , Ax; and VIEM =" (EFM-VISM -EFM’> . Here,

-1

- 1L

VI?M — (DFMT fofoM/DFM/>
t=1

with x¥'™ = (f/,x])" and D™ = diag (t',T~'/?I;), and G, is a nonparametric
kernel-based HAC estimator constructed using the FMOLS residuals (see Sec-

tion 4 in [Hansen| (1992a)). The standard conditioning argument yields tgl KN
N(0,1) under Hy as T grows.

3.3. COMPARISON OF LOCAL POWER

To derive the local power of the tests, consider the local alternative Hy : 0y =
7- Under Hy, as the sample size increases

_~ N _c .
[qM _ _T& 7(8-5)+c Aoz c :
& fsobs  [zob3 02, 8/(E-VS,ENS,
\/@VIM&( \/‘sx/VIM‘sx BT M
i T(gFM 7)+e 4 .
M= —Z with Z ~ N(0,1).
N T b ks e v, .1

Consider the local power in the right-tail test for the case k = 1. To this end,

define ¢* = W Under the local alternative: 6, = 7, ¢ >0, it holds that
Glll vV

o - ~1
5 47+ m; 5™ 47+ m where V5, = <f01 Ju(r)Ju(r)’dr) ,
e; = (0,0,1,0), erpr = (0,0,1)’, and V3, is defined in . Figure 1 depicts the
local power curves of the two tests over ¢* € [0,35]. I used i.i.d N(0,1) pseudo
random variables with 7 = 1,000 and the number of replications is 50,000. The
nominal size is 5%.



CHEOL-KEUN CHO 65

Figure 1. Local Power Curve

Local power
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The FMOLS-based test exhibits a higher local power than the IMOLS-based
test, reflecting the asymptotic efficiency of the FMOLS estimator. However, the
higher local power may mask the serious size distortion of the tests in small
samples. The next section examines the finite-sample size property of the tests.

4. SIMULATION STUDY

In this section, the finite-sample properties of the tests are examined via a
Monte Carlo simulation. The data generation process is given by

yr = 0o+ 61 + Bx; +u, with § =0, B =1 (25)

and
x = 8t +x0 with §, = 1 and x¥ =x0 | +v,. (26)

The error terms u, and v, are generated from AR(1) processes

U = OUs—1 + gtu and V: = 9\/;_1 + Stv, (27)

(5 )~en((5)- (7))

The considered sample sizes are 100, 200, and 500, and the number of sim-
ulation replications is 5,000. The parameters & and 6 control the persistence

where
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of u, and v,, respectively, and p captures the strength of endogeneity. The set
of parameter values considered for this experiment is as follows: o € {0, 0.8,
0.9}, 6 €{0,0.2,0.5,0.8}, p € {0, 0.2, 0.5, 0.8}, and 6; € {0,0.1,0.5}. The
null and alternative hypotheses of interest are Hy : 0; = 0 and H; : 0; # 0. Both
tests are two-sided with the nominal size of 5%. For constructing HAC estima-
tors, the Andrews’ AR(1) plug-in data-dependent bandwidth (denoted by M*)
scheme (Andrews, |1991) is applied and the Bartlett kernel is used.

Table 1 presents the empirical rejection frequencies for the selected param-
eter values. The size-adjusted powers are reported in the parentheses. The
FMOLS-based test (t5") exhibits a slightly higher power than the IMOLS-based
test (tgl"’ ), whereas tgl” test is less size distorted. When the regression error does
not exhibit autocorrelation (i.e. & = 0), both tests can control the size very well,
with the empirical size being close to the nominal size of 5%. However, as
increases, both tests suffer from size distortion (over-rejections). However, the
IMOLS-based test is less size distorted and its empirical size is less sensitive to
the strength of endogeneity, compared to 75" test. For the DGPs with no endo-
geneity (p = 0), the overall size property of the IMOLS-based test is comparable
to or slightly better than that of the FMOLS-based test. For example, for DGPs
with p =0 and @ = 0.9, the FMOLS-based test shows rejection frequencies of
around 18% even in the largest sample (7=500), whereas the empirical size of
the IMOLS-based test (tgl"’ ) is about 15%. However, for the DGPs with endo-
geneity, the size distortion of the FMOLS-based test is substantially more severe
than that of the IMOLS-based test. For the last DGP in Table 1, the rejection
frequency of 7§ is almost twice higher than that of 75" when the sample size is
500.

By contrast, the empirical power of tgl M is slightly better than that of tgl"’ ,
particularly when the true value of 9 is close to the null value, which is in line
with the local power result in the previous section. However, when 9; is 0.5, the
difference in the power becomes smaller. In addition, the size adjusted power of
the tgl"’ test is higher than that of tg] M for the DGPs with endogeneity and highly
persistent error term.

In Section 3 it was shown that the undemeaned IMOLS residuals lead to
an invalid test. The null rejection frequencies of this invalid test are reported
in Table 2. The test exhibits under-rejections when the null is true, , which
corroborates the theoretical results in Section 3. The test power is extremely low
when 8, is relatively small and the power seems to be overly sensitive to the
strength of endogeneity and the degree of persistence.
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Table 1. Empirical size and power

T=100 T=200 T=500

P00 & " i i i i i
(0,0,0) 0 0784 0542 10628 0542 10520 0492
0.1 6740 5114 9736 8704 1 9974

0.5 1 9974 1 1 1 1

(02,0,00 0 0788 0566 10638 0538 0544 10506
0.1 6726 5194 9748 8758 1 9984

0.5 1 9984 1 1 1 1

(08,0,00 0 0704 10628 10620 0542 0554 0532
0.1 8496 7972 9968 9810 1 9998

0.5 9998 1 1 1 1 1
(0,08,02) 0 2740 2562 1904 1588 1372 1018
0.1 3634 3238 A780 3828 8652 7264

(1056)  (.0912)  (2356)  (.2016)  (.7588) (.6490)

0.5 9366 8442 9980 19690 1 9996

(7712)  (6548)  (.9860)  (.9342) 1) (.9988)

(0,08,05) 0 2778 2652 1898 1630 1374 1046
0.1 A746 4280 7094 5828 9812 9114

(1892)  (.1582)  (4590)  (.3836)  (.9516) (.8676)

0.5 9862 9504 1 9942 1 1

(9326)  (8614)  (.9994)  (.9862) o)) o

(0,08,08) 0 3008 3446 1984 1976 1368 1136
0.1 7764 7424 9582 9146 1 9972

(5116)  (.3480)  (.8844)  (.7986)  (.9998) (.9942)

0.5 9992 9962 1 1 1 1

(9902)  (.9430) o) (.9994) o)) o)

(0,09,02) 0 3516 3654 2510 2430 1776 1500
0.1 3702 3850 3674 3326 5706 4450

(0774)  (0682)  (1120)  (.0926)  (.3378) (:2744)

0.5 8082 7206 9510 8630 9996 9868

(4750)  (3820)  (.8074)  (.6710)  (.9982) (.9680)

(0,09,05) 0 3636 3830 2538 2514 1798 1526
0.1 4362 4382 4972 4400 7984 6700

(1068)  (.0976)  (.1960)  (.1658)  (.6214) (.5090)

0.5 9324 8724 9930 9606 1 9976

(7182)  (6150)  (.9570)  (.8802) o)) (.9958)

(0,09,08) 0 3900 4538 2668 2780 1798 1532
0.1 6714 6740 8390 7796 9926 9654

(2902)  (.1930)  (5936)  (.5006)  (.9754) (.9264)

0.5 9900 9776 9998 19980 1 1

(9242)  (8120)  (.9986)  (.9854) 1 1)

(05,09,05) 0 4556 4304 3378 2774 2226 1578
0.1 3476 3644 3530 3670 7356 6894

(0202)  (.0282)  (.0542)  (.0852)  (.4746) (.5100)

0.5 8954 8582 9892 9654 1 9992

(5002)  (4756)  (.8998)  (.8656) o)) (.9982)

(08,0.9,05) 0 16692 5538 5158 3516 3252 1636
0.1 3928 3580 3020 3246 7454 7866

(0080)  (.0084)  (.0098)  (.0356)  (.4210) (.6160)

0.5 8972 8902 9950 9872 1 9998

(3310)  (3752)  (8672)  (.8902) ) (.9998)

Note: In the parentheses are the size-adjusted powers. The simulation DGP is described in , , and
. Hy :6;=0. t(’sll"l and tglM are defined in and , respectively. The Bartlett kernel and the
Andrews’ AR(1) plug-in data-driven bandwidth are used. Both tests are two-sided with the nominal size of 5%.
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Table 2. Empirical size and power, IMOLS-based test with undemeaned
residuals, 7 = 200

5,\' =1 (SX =2
(p,a,0) (05,09,05) (0.8,09,0.5) (0.8,09,02) (0.5,09,05) (0.8,09,0.5) (0.8,0.9,0.2)
81 0 .0752 0222 .0142 .0326 .0084 .0066
0.1 1130 0212 .0090 .0302 .0054 .0048
0.5 7050 .5010 .1028 .1828 .0354 .0090

Note: The simulation DGP is described in 12_5}, (12_6}, and (12_7} Hy :61= 0. The Bartlett kernel and the
Andrews’ AR(1) plug-in bandwidth are used. The test is two-sided and the reference distribution is the standard normal.

5. EMPIRICAL APPLICATION

To illustrate the use of the proposed test, I consider the cointegrating rela-
tionship between U.S. aggregate consumption (c;), household wealth (a;), and
labor income (y;) developed by [Lettau and OgLudvigson| (2001):

=0+ ﬁaat + ﬁyyt + Uy (28)

The CAY data is available for download at Martin Lettau’s websitef] The
data covers the period 1952Q1-2019Q3 and the sample size is 271.

First, to test for the presence of nonzero drifts in the /(1) regressors, I car-
ried out ¢ tests separately for household wealth and labor income series in the
following intercept-only equations.

Nay =8, +v{, and Ay, = 8, +v;.

~

The OLS estimates for the drifts are given by 6, = ﬁ Y, Aa, =0.0063,

and gy = ﬁZ,TZZ Ay, = 0.0053. The Newey-West standard errors are 0.0012
and 5.3/10%, respectively. To calculate the standard errors, the Andrews’ AR(1)
plug-in data-driven bandwidth rule (Andrews, |[1991)) was applied. The ¢ values
are 5.2091, and 10.0047, being supportive for nonzero drifts in the regressors.

Next, to test for the regression trend coefficient, I considered the following
regression equation.

=0+ 01t+ ﬁaat + ﬁyyt + . (29)
The estimated equations are:

c™ — 0.4120 4 0.00042¢ +0.1560a, +0.7822y;

“https://sites.google.com/view/martinlettau/data
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in the FMOLS estimation, and
™ = —0.5028 — 0.00002¢ +0.2127a, + 0.8140y,

in the IMOLS estimation. To obtain the FMOLS estimate, 42 lags were used
to calculate the HAC estimator, following the Andrew’s data-driven bandwidth
scheme. The same bandwidth value was used to calculate tgl M In the IMOLS in-
ference, 62, was estimated with 40 lags, as also suggested by the data-dependent
bandwidth rule. The ¢ values for the regression trend coefficient (0;) were given
by
15" = 0.5968, and 5 = —0.0241,

whereas the 95% standard normal critical value is 1.96 in the two-tail tests. Thus,
both tests fail to reject Hy : 0; = 0, which implies that the original regression
specification in (28)) is correct and the three series are deterministically cointe-
grated.

6. CONCLUSION

In this study, I proposed an IMOLS-based test on the regression trend slope
coefficient. To construct the test statistic, I considered the IMOLS residuals ob-
tained by plugging in the IMOLS estimator of the regression parameter in the
original regression equation. This residual, after demeaning, can be used for
constructing a consistent estimator of the long-run variance. In the simulation
experiment, the proposed IMOLS-based test displayed better size property com-
pared to the FMOLS-based test.

APPENDIX. Mathematical Proof

Proof of Theorem 1 .
Rearranging by adding and subtracting AD, ((Tl/ 2teDE'Q) Qm)/ 010 >
yields

’\d ;l d/ ;l/’ 0/> A (30)
D/ -1 D1 e TFDJI:/Q;VI L
0
T'2t:DE'Q1Q,,
( X, 0’) AP 0

0
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The last term of the right handside in (30) is zero:

T2 DI'Q1Q,,
( o, 0’) Al 0 31)
0
T-'2¢;! —1-'D, DI T'27:DI'Q Q.
—_ < zd/’ xtdlv 0/) 0 Tﬁllk 0 0
0 0 I 0
DI'Q 10,
— ( zd,v Xf/, 0/) 0 :f;d’Df/Q;VIQvu :0’
0
since f4'DF' = (0 t—T—“) o =0.
t Py ? 2 0/
This yields
T ( 1l 0’) AP (32)
P T'21:DE'Q 10,
< [ (afn) '3 (8-6.) +afy 0
0
R T'27:D'Q 10,
—ul ( Al ! 0’) (9 - 9*) +AD 0
0
= uf — ( td/, xf’, 0') (57 9**) ,
T'25:DF'Q-1Q,, §-DI'Q 10,
where 6, = 6, — AP, 0 = B
0 QlQ,

Now, to check on the condition (V3-ii), consider
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T_I/ZTEI —T_ID; _Dfl
VT (S, 5, 0) ARy = VT (£, 5, 0) 0 T 0
0 0 I
(33)

_ ( [d/,q;l’ ﬁ(_T—l ,d,D;‘FT_]X;i,), _ﬁﬁd/D;?/)

1 T+1 1 o 1 & o .
=10, =(t—— |, xi—=Y x; |,0],
( T< 2 > ﬁ(’ Tj;f

from which, by standard arguments, one can show

1 !/
\/f(f[i/TP xﬁ,/TP 0/> Ag\ll = <07 r— %7 <Wv(r) _/ WV(S)ds) Q\lll{z’ O/> N
0

(34)
Thus,
sup ||VT (£, 5", 0') Ay || = 0, (1), (35)
1<t<T
which verifies that the condition (V3-ii) holds.
Next, by
o o T'20:DI'Q-1Q,,
(42" (9—9**) =AD" (9—9*)+ 0 =0,(1),
0

(36)

which verifies the condition (V3-iii).

Proof of Corollary 1
Rewrite the last equation in using u; = ud + %erzl u; and

(40) (0-0.) = (. #.0) (3-0.) 4 (1 £ 0 (0-0.)
i=1 i=1

to obtain

i =u’ — ( X!, 0’) (5— 9**> +Bi7 +Bor +Bsr (37
= ﬁ;l+BlT +Bor + B3 1= ﬁfI+BT
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with Bir = %Z;:l uj, Bor = — (l

lz;l .fi/’ %Z[T:]-xiy 0/) (/9\* 6**) and B3T =
—8/0,1Q,,,.

Note that By —> 0, - 7 Y., fiD.—

15/7 & Zz (X = TzZ (ax+5xi+x?)/
184+ 0,(1),and Y7, f/DE" = §/. Thus,
15, 18 ~1(5
(b o) (5-o.)
i=1 i=1

_ T_l/zliflf_l _iif/D/ + ZX 1 T DF/ (AD/)fl <§_9 )
- Ti:l i'F > T2 = i“x i Ti:l M *ok
= — (0/7 Ola - 5 ) SxAy

by applying and li Combining these results yields By — §;A7 — 6,Q,, Q=
B

0o

Next, substitute ﬁf + By for u; in r ;in lb to rewrite I; as

L=+ + T 4+ T,
where F’

Ad’\d T _
TZI g, I =
T _
T

T~ _
TZt JH“[BTvF
T T—jp2
= —*B7. Hence

th —jt1 u, B, and

gm_< +22k<:>:> Gﬂ+22k( )ﬂﬁ (39)
(S £

= O+ O+ Qi+ O

Note that T} = T/ = 0 because Y/, & = 0.

The first term QI in above equatlon converges to ,, by Theorem 1. The
second term, by recalhng that Y.L, @ =

0, can be rewritten as

oll = 2Zk< >r” 2Zk< ) t;rlAdBTf—B Zk( )(

i=1
(40)
To derive a limit result for Zl L4, note that

[rT] [rT] [rT]

ZW ZW Z(w

t x;i/a 0,> AIDlliI (Aﬁ/l)71 (5_ 9**)
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by (32) and that Equation (33) implies

[rT] [rT] rT] 1 T+1> 1 1 T
~d o o / AN N
il = - e (XA )0 ) (af) T (B-e).
I e S A G o
(41)
Then, by Assumption 1, Equation (I2) and by applying the continuous mapping

theorem (CMT),
VZVZT’ ) —rBu(1) - <o r(r /B ds0'> A =E(r).
(42)
Therefore,

=28y (’) <—fﬁd> “3)
T =" \m)\ &

M3/2 j 1 J 4 M3/2
2B~ fk ) M’l/zifﬂ 428, / KW)Eu)du — (44)
M= \M il

as M and T grow. This implies ;; 1 Q” converges in probability to zero as 7" and
M grow with % shrinking to zero.
The last term QLY in (39) can be rewritten as

M . .
2 JNT—J
B <1+2j_21k(M> T). (45)

The summation in this expression can be further rewritten by using TJ =—

L) 7 -2 () [ () ! “

because

g
/N
|~
N—
_|_

1 as
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Note that - Y | k (ﬁ) (1 - ﬁ') — & k(x) (1 —x) dx < o, and & EY &k (ﬁ) =
fol k(x)dx < e as M increases, by the integrability condition in (K). Thus, as T
and M grow with ¥ shrinking to zero,

)R )@ E ) [

i ) @7)
from which one can deduce QIY, = 0,(M) by recalling B =0,(1).
Finally, by combining these results one can deduce that &,,, = 0,(M) and

1 ~ 1
— Q5282 / k(x)dx. (48)
M 0
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