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1. INTRODUCTION

In this study, I address the trend coefficient testing problem in cointegrating
regressions when I(1) regressors have nonzero drifts (i.e. contain deterministic
linear trends). Testing for the regression trend slope is important to learn about
the nature of the cointegrating relationships. If the regression trend coefficient
is zero, the I(1) series are ‘deterministically cointegrated’, in which the linear
combination with a cointegrating vector eliminates the deterministic trends as
well as the stochastic trends. Otherwise, the I(1) series are only stochastically
cointegrated and the cointegrating relationship involves a deterministic trend.1

See Ogaki, 1992; Ogaki and Park, 1997; Han and Ogaki, 1997; Kakkar and
Ogaki, 1999; Wagner, 2015; and Mikayilov et al., 2018 for related empirical
applications.

I develop a test on the trend slope in the integrated modified ordinary least
squares (IMOLS) estimation (Vogelsang and Wagner, 2014) framework, using
an IMOLS residual that is obtained by plugging in the IMOLS estimator in the
original regression equation. However, I find that this residual must be demeaned
to apply it to construct a consistent long-run variance estimator. Without de-
meaning, the resulting heteroskedasticity and autocorrelation consistent (HAC)
estimator is not consistent and the associated test is not appropriate for statistical
inference unless the regressors have no drift. The performance of the proposed
IMOLS-based test is evaluated via a simulation experiment. The simulation re-
sult shows that the IMOLS-based test has smaller size distortions with a moder-
ate loss of power, compared to the fully modified OLS-based test.

The remainder of the paper is organized as follows. Section 2 presents the
model and provides a review of the IMOLS estimator. Section 3 develops the
asymptotic theory for the test. Section 4 evaluates the performance of the test in
finite samples via a Monte Carlo simulation, and Section 5 provides an empirical
application. Section 6 concludes the paper.

1See Ogaki and Park, 1997; Perron and Campbell, 1993; Campbell and Perron, 1991; and
Perron and Rodr´ıguez, 2016 for further discussion.
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2. MODEL SETUP AND PRELIMINARY RESULTS

2.1. MODEL AND ASSUMPTION

Suppose that yt (scalar valued) and xt (k dimensional) are I(1) series with
drifts:

yt = αy +δyt + y0
t , (1)

xt = αx +δxt + x0
t ,

where δx ̸= 0, y0
t = y0

t−1 + vy
t , and x0

t = x0
t−1 + vt with vy

t and vt being I(0). I
consider the unrestricted regression equation:

yt = δ0 +δ1t + x′tβ +ut , (2)

where δ0 = αy −β ′αx, δ1 = δy −β ′δx, and ut = y0
t −β ′x0

t ∼ I(0). The null hy-
pothesis of interest is H0 : δ1 = 0 (deterministic cointegration) and the alternative
hypothesis is H1 : δ1 ̸= 0 (stochastic cointegration).

Assumption 1.
Let ηt = (ut ,v′t)

′, and assume a functional central limit theorem of the form:

T−1/2
[rT ]

∑
t=1

ηt ⇒ B(r) =
(

Bu(r)
Bv(r)

)
= Ω

1/2W (r), r ∈ [0,1],

where W (r) = (wuv(r),w′
v(r))

′ is (k+1)-dimensional standard Brownian motion
with

Ω = lim
T→∞

(
T−1var

(
T

∑
t=1

ηt

))
=

[
Ωuu Ωuv

Ωvu Ωvv

]
> 0. (3)

Under Assumption 1, yt and xt are cointegrated up to the deterministic trend.
Following the literature, the Cholesky form of Ω1/2 is used:

Ω
1/2 =

[
σuv λuv

0 Ω
1/2
vv

]
, where σ

2
uv = Ωuu −ΩuvΩ

−1
vv Ωvu. (4)

Note that wuv(·) represents the part of Bu(·) that is independent of Bv(·)=Ω
1/2
vv wv(·).

Define the one-sided long-run covariance matrix

Λ =
∞

∑
j=1

E
(
ηt− jη

′
t
)
=

[
Λuu Λuv

Λvu Λvv

]
and Σ = E

(
ηtη

′
t
)
=

[
Σuu Σuv

Σvu Σvv

]
. (5)

Note that Ω=Σ+Λ+Λ′. Further, define ∆≡Σ+Λ and denote ∆=

[
∆uu ∆uv

∆vu ∆vv

]
.
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2.2. IMOLS ESTIMATOR

Vogelsang and Wagner (2014) (hereafter, VW (2014)) proposed the IMOLS
estimator, which is the OLS estimator in the following partial-summed and aug-
mented regression:

Sy
t = S f ′

t δ +Sx′
t β + x′tγ +Su

t , (6)

with δ = (δ0,δ1)
′ , Sy

t = ∑
t
j=1 y j, S f

t = ∑
t
j=1 f j = ∑

t
j=1 (1, j)′ , Sx

t = ∑
t
j=1 x j, and

Su
t = ∑

t
j=1 u j. In matrix form,

Sy = Sx̃
θ +Su, (7)

where Sx̃ =

(
S f ...Sx...X

)
and θ =(δ ′,β ′,γ ′)′ with S f =

(
S f

1 , . . .S
f
T

)′
, Sx =(Sx

1, . . .S
x
T )

′ ,

and X = (x1, . . .xT )
′. The IMOLS estimator of θ is given by

θ̂ =
(

δ̂
′, β̂ ′, γ̂ ′

)′
=
(

Sx̃′Sx̃
)−1

Sx̃′Sy. (8)

VW (2014) derive the following limit result for the case of δx = 0 :

A−1
IM

 δ̂ −δ

β̂ −β

γ̂ −Ω−1
vv Ωvu

=

T 1/2τF(δ̂ −δ )

T
(

β̂ −β

)(
γ̂ −Ω−1

vv Ωvu
)
 d→σuv

(
Π

∫
g(s)g(s)′dsΠ

′
)−1

Π

∫
g(s)wuv(s)ds,

(9)
where

Π=

I2 0 0
0 Ω

1/2
vv 0

0 0 Ω
1/2
vv

 , g(r)=

 ∫ r
0 f (s)ds∫ r

0 wv(s)ds
wv(r)

 , AIM =

T−1/2τ
−1
F 0 0

0 T−1Ik 0
0 0 Ik

 ,

(10)
and τF is a diagonal matrix with diagonal elements 1, T satisfying

T−1
τ
−1
F

[rT ]

∑
t=1

ft →
∫ r

0
f (s)ds, r ∈ [0,1] as T grows with f (s) = (1,s)′ . (11)

When δx ̸= 0, the limit result in (9) is still valid for β̂ and γ̂ but not for δ̂ . The
fully valid limit result for the present case of nonzero drifts (δx) in the regressors
is derived in Cho (2022a). Define θ∗ =

(
δ ′,β ′,Ω′

vuΩ−1
vv
)′ and G(r)≡

∫ r
0 g(s)ds.

Cho (2022a) shows that
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(
AD′

IM
)−1
(

θ̂ −θ∗

)
+

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

=
(
AD′

IM
)−1
(

θ̂ −θ∗∗

)
(12)

d→σuvΠ
−1
(∫ 1

0
g(s)g(s)′ds

)−1 ∫ 1

0
(G(1)−G(s))dwuv (s) :=A∞ =

(
A∞′

δ
1×2

, A∞′
β

1×k

,A∞′
γ

1×k

)′

,

where

θ∗∗ ≡ θ∗−AD′
IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

=

 δ −DF ′
x Ω−1

vv Ωvu

β

Ω−1
vv Ωvu

 ,

and

AD
IM =

 T−1/2τ
−1
F 0 0

−T−1Dx T−1Ik 0
−DF

x 0 Ik

 , (13)

with Dx ≡
(

0
... δx

)
and DF

x ≡
(

δx
... 0
)
, both being k×2 matrices.2

Conditional on wv (·) , the variance of A∞ in (12) is given by σ2
uvΠ−1V Ξ

IMΠ−1 :=
σ2

uvV
o
IM, with

V Ξ
IM ≡

(∫ 1

0
g(s)g(s)′ds

)−1 ∫ 1

0
(G(1)−G(s))(G(1)−G(s))′ ds

(∫ 1

0
g(s)g(s)′ds

)−1

,

(14)
and also conditional on wv (·) , var

(
A∞

β

)
= σ2

uv (E ·V o
IM ·E ′) := V β

IM, with E ≡
[0k×2 Ik 0k×k] .

Building on the result in (12), the asymptotic result that can be directly ap-
plicable for the inference on δ1 can be derived (see Cho (2022b)):

T
(

δ̂1 −δ1

)
d→−δ

′
xA∞

β
, (15)

where A∞

β
is the segment of A∞ that corresponds to β̂ defined in (12).

2(AD′
IM
)−1

=

 T 1/2τF T 1/2τF D′
x T 1/2τF DF ′

x
0 T Ik 0
0 0 Ik


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3. INFERENCE FOR THE TREND COEFFICIENT

3.1. IMOLS-BASED TEST

The limit distribution in (15) provides a basis for constructing a test statistic,
which is given by

tIM
δ1

=
T δ̂1√

δ̂ ′
xV̂

β

IM δ̂x

, (16)

where δ̂x =
1

T−1 ∑
T
t=2△xt and V̂ β

IM denotes a consistent estimator of V β

IM =σ2
uv (E ·V o

IM ·E ′)

with E ≡ [0k×2 Ik 0k×k]. Thus, an estimator V̂ β

IM is composed of two parts: esti-
mators of σ2

uv and E ·V o
IM ·E ′.

As shown in VW (2014) V̆ o
IM is consistent for V o

IM, and Cho (2022a) shows
that E · V̆ o

IM ·E ′ is a consistent estimator for E ·V o
IM ·E ′ even in the present case

δx ̸= 0 :

V̆ o
IM = A−1

IM

(
Sx̃′Sx̃

)−1 (
C′C
)(

Sx̃′Sx̃
)−1

A−1
IM ,

where C = (c1,c2, . . . ,cT )
′, with ct = ∑

T
j=1 Sx̃

j −∑
t−1
j=1 Sx̃

j and Sx̃′
j = the jth row in

Sx̃.
To estimate σ2

uv, one might consider using ût ≡ yt − f ′t δ̂ − x′t β̂ , which is ob-
tained by plugging in the IMOLS estimator in the original regression equation
(2). It will be shown that this residual contains terms involving the nonzero
drift (δx), and it does not deliver a consistent estimator of the long-run variance
(Corollary 1). However, the demeaned residual leads to a consistent long-run
variance estimator and a valid statistical inference with the standard normal ap-
proximation. The demeaned residual is given by

ûd
t ≡ ût −

1
T

T

∑
j=1

û j,

and △ẍt ≡ △xt −△x = (vt +δx)− 1
T−1 ∑

T
t=2 (vt +δx) = vt − 1

T−1 ∑
T
t=2 vt = vd

t

with △x = 1
T−1 ∑

T
t=2△xt . Define η̂t ≡

(
ûd

t , △ẍ′t
)′. The nonparametric kernel-

based HAC estimator for the long-run variance Ω is given by

Ω̂ =
1
T

T

∑
i=1

T

∑
j=1

k
(
|i− j|

M

)
η̂iη̂

′
j :=

[
Ω̂uu Ω̂uv

Ω̂vu Ω̂vv

]
,

where k (x) is a kernel function, for example, the Bartlett kernel: k (x)= (1−|x|)·
1(|x| ≤ 1).
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Provided that Ω̂ is consistent for Ω, σ̂2
uv ≡ Ω̂uu − Ω̂uvΩ̂−1

vv Ω̂vu and V̂ β

IM =

σ̂2
uv
(
E ·V̆ o

IM ·E ′) are consistent for σ2
uv and V β

IM, respectively. Upon this consis-
tency property, by the standard conditioning argument, tIM

δ1
converges in distribu-

tion to N(0,1) under H0. For the consistency of the long-run variance estimator,
some regularity conditions for ηt ≡ (ut , v′t)

′ are required. In addition, for the
case where (ut , v′t)

′ needs to be estimated, another set of sufficient conditions
such as those found in Hansen (1992a) may be invoked.

First, different sets of regularity conditions for consistency of HAC estima-
tors are provided in the literature (see Newey and West, 1987; Andrews, 1991;
Hansen, 1992a; and Jansson, 2002 among others). The unobserved series {ηt}
should be assumed to meet at least one of those conditions. In the present paper,
I assume that the conditions (K), (S), and (V1) in Hansen (1992a) hold for {ηt}:

Let {αm}∞

m=1 denote the α-mixing coefficient for {ηt} .3
(K) For all x ∈ R, |k(x)| ≤ 1 with k(x) = k(−x) and k(0) = 1; k(x) is

continuous at zero and for almost all x;
∫
R |k(x)|dx < ∞.

(S) M → ∞ as T grows, and for some q ∈ (1/2,∞), M1+2q/T = Op (1) .
(V1) For some r ∈ (2,4] such that r > 2+1/q, and some p > r,

(V1-i) 12∑
∞
m=1 α

2(1/r−1/p)
m < ∞; (V1-ii) supt≥1 ∥ηt∥p < ∞.

The condition (K) is satisfied by most popular kernels including the Bartlett,
and QS kernels. As documented in Hansen (1992a), the condition (S) is also sat-
isfied for the data-driven bandwidth proposed in Andrews (1991), with different
values of q depending on the kernel. For the Bartlett and QS kernel, the condi-
tion holds with q = 1 and q = 2, respectively. Note that this condition implies
that M = Op(T 1/3) for the Bartlett kernel, and M = Op(T 1/5) for the QS ker-
nel. (V1-i) imposes a restriction on the degree of temporal dependence for {ηt},
and (V1-ii) states that the Lp norm of the series is uniformly bounded, putting a
restriction on the tail-thickness of the distribution.

Second, for the case where (ut , v′t)
′ needs to be estimated, Hansen (1992a)

provides a set of sufficient condition (condition (V3) in his paper) that guarantees
the consistency of a HAC estimator. Suppose that we construct a HAC estimator
using the residuals Vt (θ) = Vt −X′

t

(
θ̂ −θ 0

)
to estimate the long-run variance

of Vt . Here, θ 0 represents a model parameter, θ̂ is an estimator for θ 0, and Xt

denotes a set of regressors. Let {δ T} be an appropriate sequence of deterministic

3The condition (V1-i) may be stated in terms of the ϕ mixing coefficients as in Hansen
(1992a).
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nonsingular matrices. The set of sufficient condition in Hansen (1992a) is as
follows:

(V3-ii) sup
t≤T

∥∥X′
tδ

′
T

∥∥= Op (1) , and

(V3-iii)
√

T
(
δ
′
T
)−1
(

θ̂ −θ 0

)
= Op (1) .

As the HAC estimator is constructed with η̂t ≡
(
ûd

t , △ẍ′t
)′
, the sufficient

condition in Hansen (1992a) should be checked for η̂t .
Note that

ût = yt − f ′t δ̂ − x′t β̂ = ut −
(

f ′t , x′t , 0′
)(

θ̂ −θ∗

)
and

ûd
t = ud

t −
(

f d′
t , xd′

t , 0′
)(

θ̂ −θ∗

)
= ud

t −
(

f d′
t , xd′

t , 0′
)

AD′
IM
(
AD′

IM
)−1
(

θ̂ −θ∗

)
,

(17)
where ud

t ≡ ut − 1
T ∑

T
j=1 u j, f d

t = ft − 1
T ∑

T
j=1 f j, and xd

t = xt − 1
T ∑

T
j=1 x j.

The proof for Theorem 1 in the Appendix shows

ûd
t = ud

t −
(

f d′
t , xd′

t , 0′
)

AD′
IM
(
AD′

IM
)−1
(

θ̂ −θ∗∗

)
,

where

θ∗∗ ≡ θ∗−AD′
IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

=

 δ −DF ′
x Ω−1

vv Ωvu

β

Ω−1
vv Ωvu

 .

Now, rewrite η̂t as

η̂t ≡
(

ûd
t

△ẍt

)
=

(
ud

t
vd

t

)
−

( (
f d′
t , xd′

t , 0′
)(

θ̂ −θ∗∗

)
0k×1

)

=

(
ud

t
vd

t

)
−
( (

f d′
t , xd′

t , 0′
)

AD′
IM

0k×(2k+2)

)(
AD′

IM
)−1
(

θ̂ −θ∗∗

)
.

This equation shows that η̂t satisfies the conditions (V3-ii) and (V3-iii) if ûd
t

does. In the proof for Theorem 1 it is shown that(
AD′

IM
)−1
(

θ̂ −θ∗∗

)
= Op (1) ,
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and
sup

1≤t≤T

∥∥∥√T
(

f d′
t , xd′

t , 0′
)

AD′
IM

∥∥∥= Op (1) ,

which verifies that ûd
t meets the sufficient condition with δ T =AD

IM, Xt =
(

f d′
t , xd′

t , 0′
)′,

θ̂ = θ̂ , and θ 0 = θ∗∗.
Theorem 1 states that the HAC estimator Ω̂ is consistent, which is established

by showing that the conditions (V3-ii) and (V3-iii) hold.

Theorem 1. Under Assumption 1, (K), (S), and (V1), as T and M grow, it holds
that

Ω̂
p→ Ω, and σ̂

2
uv

p→ σ
2
uv. (18)

Proof: See the Appendix.

Remark. Unlike ûd
t , the undemeaned residual ût does not satisfy the Hansen’s

sufficient condition. To see this, rewrite the residual as

ût = ut −
(

f ′t , x′t , 0′
)(

θ̂ −θ∗

)
(19)

= ut −
(

f ′t , x′t , 0′
)(

θ̂ −θ∗∗

)
−
(

f ′t , x′t , 0′
)

AD′
IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0


= ut −

(
f ′t , x′t , 0′

)(
θ̂ −θ∗∗

)
−δ

′
xΩ

−1
vv Ωvu,

and observe that the last term δ ′
xΩ−1

vv Ωvu is generally not zero if the regressors
have nonzero drifts (δx ̸= 0). Also, with a nonzero δx,

√
T
(

f ′t , x′t , 0′
)

AD′
IM =

(
1, t/T, T−1/2

α
′
x +T−1/2x0′

t , −
√

T δ
′
x

)
explodes as T grows, violating the condition (V3-ii). Next Corollary directly
shows that the HAC estimator constructed with ût is not consistent for Ωuu. De-
fine

Ω̃uu = Γ̃0 +2
M

∑
j=1

k
(

j
M

)
Γ̃ j, (20)

where Γ̃ j =
1
T ∑

T
t= j+1 ût ût− j.

Corollary 1. Under Assumption 1, (K), (S), and (V1), as T and M grow, it holds
that

1
M

Ω̃uu
d→ 2B2

∞

∫ 1

0
k(x)dx, (21)

where B∞ = δ ′
x
(
A∞

γ −Ω−1
vv Ωvu

)
.



CHEOL-KEUN CHO 63

Proof: See the Appendix.

Remark. Define Ω̃= 1
T ∑

T
i=1 ∑

T
j=1 k

(
|i− j|

M

)
η̃iη̃

′
j =

[
Ω̃uu Ω̃uv

Ω̃vu Ω̃vv

]
with η̃t ≡ (ût , △ẍ′t)

′ .

Note that Ω̃vv = Ω̂vv
p→ Ωvv. In addition, it can be shown that Ω̃uv (and Ω̃vu) is

Op

(
M3/2

T

)
as Ω̃uu is, by using the same arguments in the proof of Corollary

1. Thus, σ̃2
uv ≡ Ω̃uu − Ω̃uvΩ̃−1

vv Ω̃vu = Op (M)− Op

(
M3/2

T

)
Op(1)Op

(
M3/2

T

)
=

Op (M)−Op

((M
T

)2 M
)
= Op (M) . Hence the associated t statistic converges to

zero under H0. Therefore, the standard normal approximation is invalid.

3.2. FMOLS-BASED TEST

For the fully modified OLS (FMOLS) estimator, Hansen (1992a) shows

T
(

β̂FM −β

)
d→
(

0, Ω
−1/2
vv

)
×σuv

(∫ 1

0
Ju(r)Ju(r)′dr

)−1 ∫ 1

0
Ju(r)wuv(r)dr

= σuvEFM
Π

−1
FM

(∫ 1

0
Ju(r)Ju(r)′dr

)−1 ∫ 1

0
Ju(r)wuv(r)dr := A∞

βFM
,

with Ju(r) = ( f (r)′,wv(r)′)
′ , EFM = (0k×2, Ik) , and ΠFM = diag

(
I2,Ω

1/2
vv

)
. The

asymptotic distribution for the FMOLS estimator of δ1 can be similarly obtained
by following the steps applied for deriving (15) (see Cho (2022a) and Hansen
(1992a)).

T
(

δ̂
FM
1 −δ1

)
d→−δ

′
xA∞

βFM
. (22)

The variance of the limit in (22) conditional on wv(·) is given by

δ
′
xV

β

FMδx = δ
′
x

(
σ

2
uvEFM

Π
−1
FM

(∫ 1

0
Ju(r)Ju(r)′dr

)−1

Π
−1
FMEFM′

)
δx (23)

:= δ
′
x
(
σ

2
uvEFMV o

FMEFM′)
δx,

where V o
FM ≡ Π

−1
FM

(∫ 1
0 Ju(r)Ju(r)′dr

)−1
Π

−1
FM. The inference for δ1 can be con-

ducted with

tFM
δ1

=
T δ̂ FM

1√
δ̂ ′

xṼ
β

FM δ̂x

, (24)
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where δ̂x =
1
T ∑

T
t=2△xt and Ṽ β

FM = σ
2
uv

(
EFM ·Ṽ o

FM ·EFM′
)
. Here,

Ṽ o
FM =

(
DFM 1

T

T

∑
t=1

xFM
t xFM′

t DFM′

)−1

with xFM
t = ( f ′t ,x

′
t)
′ and DFM = diag

(
τ
−1
F ,T−1/2Ik

)
, and σ

2
uv is a nonparametric

kernel-based HAC estimator constructed using the FMOLS residuals (see Sec-
tion 4 in Hansen (1992a)). The standard conditioning argument yields tFM

δ1

d→
N(0,1) under H0 as T grows.

3.3. COMPARISON OF LOCAL POWER

To derive the local power of the tests, consider the local alternative HA : δ1 =
c
T . Under HA, as the sample size increases

tIM
δ1

= T δ̂1√
δ̂ ′

xV̂
β

IM δ̂x

=
T
(

δ̂1− c
T

)
+c√

δ̂ ′
xV̂

β

IM δ̂x

d→ Z + c√
σ2

uvδ ′
x(E·V o

IM ·E ′)δx
;

tFM
δ1

=
T δ̂ FM

1√
δ̂ ′

xV̂
β

FM δ̂x

=
T
(

δ̂ FM
1 − c

T

)
+c√

δ̂ ′
xV̂

β

FM δ̂x

d→ Z + c√
σ2

uvδ ′
x(EFM ·V o

FM ·EFM′)δx
with Z ∼ N(0,1).

Consider the local power in the right-tail test for the case k = 1. To this end,
define c∗ ≡ c

σuv|δx|Ω−1/2
vv

. Under the local alternative: δ1 =
c
T , c > 0, it holds that

tIM
δ1

d→Z+ c∗√
e′3V Ξ

IMe3
; tFM

δ1

d→Z+ c∗√
e′FMV Ξ

FMeFM
, where V Ξ

FM =
(∫ 1

0 Ju(r)Ju(r)′dr
)−1

,

e3 = (0,0,1,0)′, eFM = (0,0,1)′, and V Ξ
IM is defined in (14). Figure 1 depicts the

local power curves of the two tests over c∗ ∈ [0,35] . I used i.i.d N(0,1) pseudo
random variables with T = 1,000 and the number of replications is 50,000. The
nominal size is 5%.
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Figure 1. Local Power Curve
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The FMOLS-based test exhibits a higher local power than the IMOLS-based
test, reflecting the asymptotic efficiency of the FMOLS estimator. However, the
higher local power may mask the serious size distortion of the tests in small
samples. The next section examines the finite-sample size property of the tests.

4. SIMULATION STUDY

In this section, the finite-sample properties of the tests are examined via a
Monte Carlo simulation. The data generation process is given by

yt = δ0 +δ1t +βxt +ut with δ0 = 0, β = 1 (25)

and
xt = δxt + x0

t with δx = 1 and x0
t = x0

t−1 + vt . (26)

The error terms ut and vt are generated from AR(1) processes

ut = αut−1 + ε
u
t and vt = θvt−1 + ε

v
t , (27)

where (
εu

t
εv

t

)
∼ i.i.d N

((
0
0

)
,

(
1 ρ

ρ 1

))
.

The considered sample sizes are 100, 200, and 500, and the number of sim-
ulation replications is 5,000. The parameters α and θ control the persistence
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of ut and vt , respectively, and ρ captures the strength of endogeneity. The set
of parameter values considered for this experiment is as follows: α ∈ {0, 0.8,
0.9}, θ ∈ {0, 0.2, 0.5, 0.8} , ρ ∈ {0, 0.2, 0.5, 0.8}, and δ1 ∈ {0, 0.1, 0.5} . The
null and alternative hypotheses of interest are H0 : δ1 = 0 and H1 : δ1 ̸= 0. Both
tests are two-sided with the nominal size of 5%. For constructing HAC estima-
tors, the Andrews’ AR(1) plug-in data-dependent bandwidth (denoted by M∗)
scheme (Andrews, 1991) is applied and the Bartlett kernel is used.

Table 1 presents the empirical rejection frequencies for the selected param-
eter values. The size-adjusted powers are reported in the parentheses. The
FMOLS-based test (tFM

δ1
) exhibits a slightly higher power than the IMOLS-based

test (tIM
δ1

), whereas tIM
δ1

test is less size distorted. When the regression error does
not exhibit autocorrelation (i.e. α = 0), both tests can control the size very well,
with the empirical size being close to the nominal size of 5%. However, as α

increases, both tests suffer from size distortion (over-rejections). However, the
IMOLS-based test is less size distorted and its empirical size is less sensitive to
the strength of endogeneity, compared to tFM

δ1
test. For the DGPs with no endo-

geneity (ρ = 0), the overall size property of the IMOLS-based test is comparable
to or slightly better than that of the FMOLS-based test. For example, for DGPs
with ρ = 0 and α = 0.9, the FMOLS-based test shows rejection frequencies of
around 18% even in the largest sample (T =500), whereas the empirical size of
the IMOLS-based test (tIM

δ1
) is about 15%. However, for the DGPs with endo-

geneity, the size distortion of the FMOLS-based test is substantially more severe
than that of the IMOLS-based test. For the last DGP in Table 1, the rejection
frequency of tFM

δ1
is almost twice higher than that of tIM

δ1
when the sample size is

500.
By contrast, the empirical power of tFM

δ1
is slightly better than that of tIM

δ1
,

particularly when the true value of δ1 is close to the null value, which is in line
with the local power result in the previous section. However, when δ1 is 0.5, the
difference in the power becomes smaller. In addition, the size adjusted power of
the tIM

δ1
test is higher than that of tFM

δ1
for the DGPs with endogeneity and highly

persistent error term.
In Section 3 it was shown that the undemeaned IMOLS residuals lead to

an invalid test. The null rejection frequencies of this invalid test are reported
in Table 2. The test exhibits under-rejections when the null is true, , which
corroborates the theoretical results in Section 3. The test power is extremely low
when δ1 is relatively small and the power seems to be overly sensitive to the
strength of endogeneity and the degree of persistence.
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Table 1. Empirical size and power
T =100 T =200 T =500

(ρ,α,θ) δ1 tFM
δ1

tIM
δ1

tFM
δ1

tIM
δ1

tFM
δ1

tIM
δ1

(0,0,0) 0 .0784 .0542 .0628 .0542 .0520 .0492
0.1 .6740 .5114 .9736 .8704 1 .9974
0.5 1 .9974 1 1 1 1

(0.2,0,0) 0 .0788 .0566 .0638 .0538 .0544 .0506
0.1 .6726 .5194 .9748 .8758 1 .9984
0.5 1 .9984 1 1 1 1

(0.8,0,0) 0 .0704 .0628 .0620 .0542 .0554 .0532
0.1 .8496 .7972 .9968 .9810 1 .9998
0.5 .9998 1 1 1 1 1

(0,0.8,0.2) 0 .2740 .2562 .1904 .1588 .1372 .1018
0.1 .3634 .3238 .4780 .3828 .8652 .7264

(.1056) (.0912) (.2356) (.2016) (.7588) (.6490)
0.5 .9366 .8442 .9980 .9690 1 .9996

(.7712) (.6548) (.9860) (.9342) (1) (.9988)
(0,0.8,0.5) 0 .2778 .2652 .1898 .1630 .1374 .1046

0.1 .4746 .4280 .7094 .5828 .9812 .9114
(.1892) (.1582) (.4590) (.3836) (.9516) (.8676)

0.5 .9862 .9504 1 .9942 1 1
(.9326) (.8614) (.9994) (.9862) (1) (1)

(0,0.8,0.8) 0 .3008 .3446 .1984 .1976 .1368 .1136
0.1 .7764 .7424 .9582 .9146 1 .9972

(.5116) (.3480) (.8844) (.7986) (.9998) (.9942)
0.5 .9992 .9962 1 1 1 1

(.9902) (.9430) (1) (.9994) (1) (1)
(0,0.9,0.2) 0 .3516 .3654 .2510 .2430 .1776 .1500

0.1 .3702 .3850 .3674 .3326 .5706 .4450
(.0774) (.0682) (.1120) (.0926) (.3378) (.2744)

0.5 .8082 .7206 .9510 .8630 .9996 .9868
(.4750) (.3820) (.8074) (.6710) (.9982) (.9680)

(0,0.9,0.5) 0 .3636 .3830 .2538 .2514 .1798 .1526
0.1 .4362 .4382 .4972 .4400 .7984 .6700

(.1068) (.0976) (.1960) (.1658) (.6214) (.5090)
0.5 .9324 .8724 .9930 .9606 1 .9976

(.7182) (.6150) (.9570) (.8802) (1) (.9958)
(0,0.9,0.8) 0 .3900 .4538 .2668 .2780 .1798 .1532

0.1 .6714 .6740 .8390 .7796 .9926 .9654
(.2902) (.1930) (.5936) (.5006) (.9754) (.9264)

0.5 .9900 .9776 .9998 .9980 1 1
(.9242) (.8120) (.9986) (.9854) (1) (1)

(0.5,0.9,0.5) 0 .4556 .4304 .3378 .2774 .2226 .1578
0.1 .3476 .3644 .3530 .3670 .7356 .6894

(.0202) (.0282) (.0542) (.0852) (.4746) (.5100)
0.5 .8954 .8582 .9892 .9654 1 .9992

(.5002) (.4756) (.8998) (.8656) (1) (.9982)
(0.8,0.9,0.5) 0 .6692 .5538 .5158 .3516 .3252 .1636

0.1 .3928 .3580 .3020 .3246 .7454 .7866
(.0080) (.0084) (.0098) (.0356) (.4210) (.6160)

0.5 .8972 .8902 .9950 .9872 1 .9998
(.3310) (.3752) (.8672) (.8902) (1) (.9998)

Note: In the parentheses are the size-adjusted powers. The simulation DGP is described in (25), (26), and
(27). H0 :δ1= 0. tIM

δ1
and tFM

δ1
are defined in (16) and (24), respectively. The Bartlett kernel and the

Andrews’ AR(1) plug-in data-driven bandwidth are used. Both tests are two-sided with the nominal size of 5%.
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Table 2. Empirical size and power, IMOLS-based test with undemeaned
residuals, T = 200

δx = 1 δx = 2
(ρ,α,θ) (0.5,0.9,0.5) (0.8,0.9,0.5) (0.8,0.9,0.2) (0.5,0.9,0.5) (0.8,0.9,0.5) (0.8,0.9,0.2)

δ1 0 .0752 .0222 .0142 .0326 .0084 .0066
0.1 .1130 .0212 .0090 .0302 .0054 .0048
0.5 .7050 .5010 .1028 .1828 .0354 .0090

Note: The simulation DGP is described in (25), (26), and (27). H0 :δ1= 0. The Bartlett kernel and the
Andrews’ AR(1) plug-in bandwidth are used. The test is two-sided and the reference distribution is the standard normal.

5. EMPIRICAL APPLICATION

To illustrate the use of the proposed test, I consider the cointegrating rela-
tionship between U.S. aggregate consumption (ct), household wealth (at), and
labor income (yt) developed by Lettau and OgLudvigson (2001):

ct = δ0 +βaat +βyyt +ut . (28)

The CAY data is available for download at Martin Lettau’s website.4 The
data covers the period 1952Q1-2019Q3 and the sample size is 271.

First, to test for the presence of nonzero drifts in the I(1) regressors, I car-
ried out t tests separately for household wealth and labor income series in the
following intercept-only equations.

△at = δa + va
t , and △yt = δy + vy

t .

The OLS estimates for the drifts are given by δ̂a =
1

T−1 ∑
T
t=2△at = 0.0063,

and δ̂y =
1

T−1 ∑
T
t=2△yt = 0.0053. The Newey-West standard errors are 0.0012

and 5.3/104, respectively. To calculate the standard errors, the Andrews’ AR(1)
plug-in data-driven bandwidth rule (Andrews, 1991) was applied. The t values
are 5.2091, and 10.0047, being supportive for nonzero drifts in the regressors.

Next, to test for the regression trend coefficient, I considered the following
regression equation.

ct = δ0 +δ1t +βaat +βyyt +ut . (29)

The estimated equations are:

ĉFM
t = 0.4120+0.00042t +0.1560at +0.7822yt

4https://sites.google.com/view/martinlettau/data
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in the FMOLS estimation, and

ĉIM
t =−0.5028−0.00002t +0.2127at +0.8140yt

in the IMOLS estimation. To obtain the FMOLS estimate, 42 lags were used
to calculate the HAC estimator, following the Andrew’s data-driven bandwidth
scheme. The same bandwidth value was used to calculate tFM

δ1
. In the IMOLS in-

ference, σ2
uv was estimated with 40 lags, as also suggested by the data-dependent

bandwidth rule. The t values for the regression trend coefficient (δ1) were given
by

tFM
δ1

= 0.5968, and tIM
δ1

=−0.0241,

whereas the 95% standard normal critical value is 1.96 in the two-tail tests. Thus,
both tests fail to reject H0 : δ1 = 0, which implies that the original regression
specification in (28) is correct and the three series are deterministically cointe-
grated.

6. CONCLUSION

In this study, I proposed an IMOLS-based test on the regression trend slope
coefficient. To construct the test statistic, I considered the IMOLS residuals ob-
tained by plugging in the IMOLS estimator of the regression parameter in the
original regression equation. This residual, after demeaning, can be used for
constructing a consistent estimator of the long-run variance. In the simulation
experiment, the proposed IMOLS-based test displayed better size property com-
pared to the FMOLS-based test.

APPENDIX. Mathematical Proof

Proof of Theorem 1
Rearranging (17) by adding and subtracting AD′

IM

((
T 1/2τFDF ′

x Ω−1
vv Ωvu

)′
,0′,0′

)′
yields

ûd
t = ud

t −
(

f d′
t , xd′

t , 0′
)

AD′
IM (30)

×

(AD′
IM
)−1

(θ̂ −θ∗

)
+AD′

IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0




−
(

f d′
t , xd′

t , 0′
)

AD′
IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

 .
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The last term of the right handside in (30) is zero:

(
f d′
t , xd′

t , 0′
)

AD′
IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

 (31)

=
(

f d′
t , xd′

t , 0′
) T−1/2τ

−1
F −T−1D′

x −DF ′
x

0 T−1Ik 0
0 0 Ik

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0


=
(

f d′
t , xd′

t , 0′
) DF ′

x Ω−1
vv Ωvu

0
0

= f d′
t DF ′

x Ω
−1
vv Ωvu = 0,

since f d′
t DF ′

x =
(
0, t − T+1

2

)( δ ′
x

0′

)
= 0.

This yields

ûd
t = ud

t −
(

f d′
t , xd′

t , 0′
)

AD′
IM (32)

×

(AD′
IM
)−1

(θ̂ −θ∗

)
+AD′

IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0




= ud
t −
(

f d′
t , xd′

t , 0′
)(θ̂ −θ∗

)
+AD′

IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0


= ud

t −
(

f d′
t , xd′

t , 0′
)(

θ̂ −θ∗∗

)
,

where θ∗∗ = θ∗−AD′
IM

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

=

 δ −DF ′
x Ω−1

vv Ωvu

β

Ω−1
vv Ωvu

 .

Now, to check on the condition (V3-ii), consider
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√
T
(

f d′
t , xd′

t , 0′
)

AD′
IM =

√
T
(

f d′
t , xd′

t , 0′
) T−1/2τ

−1
F −T−1D′

x −DF ′
x

0 T−1Ik 0
0 0 Ik


(33)

=
(

f d′
t τ

−1
F ,

√
T
(
−T−1 f d′

t D′
x +T−1xd′

t

)
, −

√
T f d′

t DF ′
x

)
=

(
0,

1
T

(
t − T +1

2

)
,

1√
T

(
x0′

t − 1
T

T

∑
j=1

x0′
j

)
, 0′
)
,

from which, by standard arguments, one can show

√
T
(

f d′
[rT ], xd′

[rT ], 0′
)

AD′
IM ⇒

(
0, r− 1

2
,

(
wv(r)−

∫ 1

0
wv(s)ds

)′
Ω

1/2
vv , 0′

)
.

(34)
Thus,

sup
1≤t≤T

∥∥∥√T
(

f d′
t , xd′

t , 0′
)

AD′
IM

∥∥∥= Op (1) , (35)

which verifies that the condition (V3-ii) holds.
Next, by (12)

(
AD′

IM
)−1
(

θ̂ −θ∗∗

)
=
(
AD′

IM
)−1
(

θ̂ −θ∗

)
+

 T 1/2τFDF ′
x Ω−1

vv Ωvu

0
0

= Op (1) ,

(36)
which verifies the condition (V3-iii).

Proof of Corollary 1
Rewrite the last equation in (19) using ut = ud

t +
1
T ∑

T
j=1 u j and

(
f ′t , x′t , 0′

)(
θ̂ −θ∗∗

)
=
(

f d′
t , xd′

t , 0′
)(

θ̂ −θ∗∗

)
+

(
1
T

T

∑
i=1

f ′i ,
1
T

T

∑
i=1

x′i, 0′
)(

θ̂ −θ∗∗

)
to obtain

ût = ud
t −
(

f d′
t , xd′

t , 0′
)(

θ̂ −θ∗∗

)
+B1T +B2T +B3T (37)

= ûd
t +B1T +B2T +B3T := ûd

t +BT
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with B1T = 1
T ∑

T
j=1 u j, B2T = −

( 1
T ∑

T
i=1 f ′i ,

1
T ∑

T
i=1 x′i, 0′

)(
θ̂ −θ∗∗

)
and B3T =

−δ ′
xΩ−1

vv Ωvu.

Note that B1T
p→ 0, 1

T 2 ∑
T
i=1 f ′i D′

x → 1
2 δ ′

x,
1

T 2 ∑
T
i=1 x′i =

1
T 2 ∑

T
i=1
(
αx +δxi+ x0

i

)′
=

1
2 δ ′

x +op(1), and 1
T ∑

T
i=1 f ′i DF ′

x = δ ′
x. Thus,

B2T =−

(
1
T

T

∑
i=1

f ′i ,
1
T

T

∑
i=1

x′i, 0′
)

AD′
IM
(
AD′

IM
)−1
(

θ̂ −θ∗∗

)
(38)

=−

(
T−1/2 1

T

T

∑
i=1

f ′i τ
−1
F , − 1

T 2

T

∑
i=1

f ′i D′
x +

1
T 2

T

∑
i=1

x′i, − 1
T

T

∑
i=1

f ′i DF ′
x

)(
AD′

IM
)−1
(

θ̂ −θ∗∗

)
⇒−

(
0′, 0′, −δ

′
x
)

A∞ = δ
′
xA∞

γ

by applying (11) and (12). Combining these results yields BT
d→ δ ′

xA∞
γ −δ ′

xΩ−1
vv Ωvu :=

B∞.
Next, substitute ûd

s +BT for ûs in Γ̃ j in (20) to rewrite Γ̃ j as

Γ̃ j = Γ̃
I
j + Γ̃

II
j + Γ̃

III
j + Γ̃

IV
j ,

where Γ̃I
j =

1
T ∑

T
t= j+1 ûd

t ûd
t− j, Γ̃II

j = 1
T ∑

T
t= j+1 ûd

t BT , Γ̃III
j = 1

T ∑
T
t= j+1 ûd

t− jBT , and
Γ̃IV

j = T− j
T B2

T . Hence

Ω̃uu =

(
Γ̃

I
0 +2

M

∑
j=1

k
(

j
M

)
Γ̃

I
j

)
+

(
Γ̃

II
0 +2

M

∑
j=1

k
(

j
M

)
Γ̃

II
j

)
(39)

+

(
Γ̃

III
0 +2

M

∑
j=1

k
(

j
M

)
Γ̃

III
j

)
+

(
Γ̃

IV
0 +2

M

∑
j=1

k
(

j
M

)
Γ̃

IV
j

)
:= Ω̃

I
uu + Ω̃

II
uu + Ω̃

III
uu + Ω̃

IV
uu .

Note that Γ̃II
0 = Γ̃III

0 = 0 because ∑
T
t=1 ûd

t = 0.
The first term Ω̃I

uu in above equation converges to Ωuu by Theorem 1. The
second term, by recalling that ∑

T
t=1 ûd

t = 0, can be rewritten as

Ω̃
II
uu = 2

M

∑
j=1

k
(

j
M

)
Γ̃

II
j = 2

M

∑
j=1

k
(

j
M

)
1
T

T

∑
t= j+1

ûd
t BT =

2
T

BT

M

∑
j=1

k
(

j
M

)(
−

j

∑
i=1

ûd
i

)
.

(40)
To derive a limit result for ∑

j
i=1 ûd

i , note that

[rT ]

∑
t=1

ûd
t =

[rT ]

∑
t=1

ud
t −

[rT ]

∑
t=1

(
f d′
t , xd′

t , 0′
)

AD′
IM
(
AD′

IM
)−1
(

θ̂ −θ∗∗

)
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by (32) and that Equation (33) implies

[rT ]

∑
t=1

ûd
t =

[rT ]

∑
t=1

ud
t −

[rT ]

∑
t=1

(
0,

1
T 3/2

(
t − T +1

2

)
,

1√
T

(
x0′

t − 1
T

T

∑
j=1

x0′
j

)
, 0′
)(

AD′
IM
)−1
(

θ̂ −θ∗∗

)
.

(41)
Then, by Assumption 1, Equation (12) and by applying the continuous mapping
theorem (CMT),

T−1/2
[rT ]

∑
t=1

ûd
t ⇒Bu(r)−rBu(1)−

(
0,

r(r−1)
2

,
∫ r

0
B′

v(s)ds− r
∫ 1

0
B′

v(s)ds,0′
)
×A∞ :=Ξ(r) .

(42)
Therefore,

Ω̃
II
uu =

2
T

BT

M

∑
j=1

k
(

j
M

)(
−

j

∑
i=1

ûd
i

)
(43)

=−M3/2

T
2BT

1
M

M

∑
j=1

k
(

j
M

)(
M−1/2

j

∑
i=1

ûd
i

)
= Op

(
M3/2

T

)

because

2BT
1
M

M

∑
j=1

k
(

j
M

)(
M−1/2

j

∑
i=1

ûd
i

)
d→ 2B∞

∫ 1

0
k(u)Ξ(u)du (44)

as M and T grow. This implies 1
M Ω̃II

uu converges in probability to zero as T and
M grow with M

T shrinking to zero.
The last term Ω̃IV

uu in (39) can be rewritten as

B2
T

(
1+2

M

∑
j=1

k
(

j
M

)
T − j

T

)
. (45)

The summation in this expression can be further rewritten by using T− j
T =−M

T

(
j

M

)
+

1 as

M

∑
j=1

k
(

j
M

)
T − j

T
=

M

∑
j=1

k
(

j
M

)[
−M

T

(
j

M

)
+1
]

(46)

=−M2

T

M

∑
j=1

k
(

j
M

)(
j

M

)
1
M

+M
M

∑
j=1

k
(

j
M

)
1
M
.
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Note that 1
M ∑

M
j=1 k

(
j

M

)(
1− j

M

)
→
∫ 1

0 k(x)(1− x)dx<∞, and 1
M ∑

M
j=1 k

(
j

M

)
→∫ 1

0 k(x)dx < ∞ as M increases, by the integrability condition in (K). Thus, as T
and M grow with M

T shrinking to zero,

1
M

M

∑
j=1

k
(

j
M

)
T − j

T
=−M

T

M

∑
j=1

k
(

j
M

)(
j

M

)
1
M

+
M

∑
j=1

k
(

j
M

)
1
M

→
∫ 1

0
k(x)dx,

(47)
from which one can deduce Ω̃IV

uu = Op(M) by recalling B2
T = Op (1) .

Finally, by combining these results one can deduce that Ω̃uu = Op(M) and

1
M

Ω̃uu
d→ 2B2

∞

∫ 1

0
k(x)dx. (48)
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